Biofabrication with biopolymers and enzymes: potential for constructing scaffolds from soft matter.

نویسندگان

  • Li-Qun Wu
  • William E Bentley
  • Gregory F Payne
چکیده

PURPOSE Regenerative medicine will benefit from technologies capable of fabricating soft matter to have appropriate architectures and that provide the necessary physical, chemical and biological cues to recruit cells and guide their development. The goal of this report is to review an emerging set of biofabrication techniques and suggest how these techniques could be applied for the fabrication of scaffolds for tissue engineering. METHODS Electrical potentials are applied to submerged electrodes to perform cathodic and anodic reactions that direct stimuli-responsive film-forming polysaccharides to assemble into hydrogel films. Standard methods are used to microfabricate electrode surfaces to allow the electrical signals to be applied with spatial and temporal control. The enzymes mushroom tyrosinase and microbial transglutaminase are used to catalyze macromolecular grafting and crosslinking of proteins. RESULTS Electrodeposition of the polysaccharides chitosan and alginate allow hydrogel films to be formed in response to localized electrical signals. Co-deposition of various components (e.g., proteins, vesicles and cells), and subsequent electrochemical processing allow the physical, chemical and biological activities of these films to be tailored. Enzymatic processing allows for the generation of stimuli-responsive protein conjugates that can also be directed to assemble in response to imposed electrical signals. Further, enzyme-catalyzed crosslinking of gelatin allows replica molding of soft matter to create hydrogel films with topological structure. CONCLUSIONS Biofabrication with biological materials and mechanisms provides new approaches for soft matter construction. These methods may enable the formation of tissue engineering scaffolds with appropriate architectures, assembled cells, and spatially organized physical, chemical and biological cues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Layer-by-layer micromolding of natural biopolymer scaffolds with intrinsic microfluidic networks.

A three-dimensional (3D) microfluidic network plays an important role in engineering thick organs. However, most of the existing methods are limited to mechanically robust synthetic biomaterials and only planar or simple microfluidic networks have been incorporated into soft natural biopolymers. Here we presented an automatic layer-by-layer micromolding strategy to reproducibly fabricate 3D mic...

متن کامل

A Review on Commonly Used Scaffolds in Tissue Engineering for Bone Tissue Regeneration

Introduction: Bone is one of the tissues that have a true potential for regeneration. However, sometimes the bone defects are so outsized that there is no chance of bone self-repair and restoration or the damage is such that it is not possible to repair with medical or surgical interventions. In these situations, bone grafts are the treatment of choice, but due to several obstacles, including l...

متن کامل

Effect of Nanoclay Addition on the Properties of Polycaprolactone Nanocomposite Scaffolds Containing Adipose Derived Mesenchymal Stem Cells used in Soft Tissue Engineering

Tissue-engineering scaffolds provide biological and mechanical frameworks for cell adhesion, growth, and differentiation. Nanofibrous scaffolds mimic the native extracellular matrix (ECM) and play a significant role in formation and remodeling of tissues and/or organs . One way to mimic the desired properties of fibrous ECM is adding nanoparticles into the polymer matrix. In the current study, ...

متن کامل

Functionalizing Soft Matter for Molecular Communication

The information age was enabled by advances in microfabrication and communication theory that allowed information to be processed by electrons and transmitted by electromagnetic radiation. Despite immense capabilities, microelectronics has limited abilities to access and participate in the molecular-based communication that characterizes our biological world. Here, we use biological materials a...

متن کامل

3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro neocartilage formation.

In this work we demonstrate how to print 3D biomimetic hydrogel scaffolds for cartilage tissue engineering with high cell density (>10(7) cells ml(-1)), high cell viability (85 ÷ 90%) and high printing resolution (≈100 μm) through a two coaxial-needles system. The scaffolds were composed of modified biopolymers present in the extracellular matrix (ECM) of cartilage, namely gelatin methacrylamid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The International journal of artificial organs

دوره 34 2  شماره 

صفحات  -

تاریخ انتشار 2011